当前位置: > 证明f〔x〕=8+2x-xˇ2,g〔x〕=f〔2-xˇ2〕,求函数g〔x〕的单调区间....
题目
证明f〔x〕=8+2x-xˇ2,g〔x〕=f〔2-xˇ2〕,求函数g〔x〕的单调区间.

提问时间:2020-12-23

答案
g(x)=8+2x^2-x^4,令x^2=t,则g(t)=8+2t-t^2,在(-2,1)上递增.(1,4)上递减,又因为x^2在(-2,0)上递减,在(0,4)上递增,根据复合函数增减性,所以在(-1,0)内是减函数,在(0,1)内是增函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.