当前位置: > 在Rt△ABC中 ∠C=90° ∠BAC ∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC 于F,求证 四边形CEDF是正方...
题目
在Rt△ABC中 ∠C=90° ∠BAC ∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC 于F,求证 四边形CEDF是正方

提问时间:2020-12-22

答案
证明:
作DG⊥AB于点G
∵D在∠ABC和∠ACB的平分线上
∴DG=DE=DF
∵∠C=∠DFC=∠DEC=90°
∴四边形CFDE是矩形
∵DE=DF
∴四边形CEDF是正方形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.