题目
已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=
1 |
2 |
提问时间:2020-12-22
答案
如图,延长AC、BE交于点M,
∵∠A的平分线AD,BE垂直AD于E,
∴∠MAE=∠BAE,∠AEM=∠AEB=90°,
∵AE=AE,
∴△AEM≌△AEB(ASA),
∴EM=BE,即BM=2BE①;
∵∠A的平分线AD,AC=BC,∠C=90°,
∴∠CAD=∠DAB=22.5°,∠ABC=45°,
∵BE垂直AD于E,
∴∠DAB+∠ABC+∠DBE=90°,即∠DBE=22.5°,
∴∠CAD=∠DBE,
又∵AC=BC,且∠ACB=∠BCM=90°,
∴△ACD≌△BCM(ASA),
∴AD=BM②;
由①②得AD=2BE,
即BE=
AD.
∵∠A的平分线AD,BE垂直AD于E,
∴∠MAE=∠BAE,∠AEM=∠AEB=90°,
∵AE=AE,
∴△AEM≌△AEB(ASA),
∴EM=BE,即BM=2BE①;
∵∠A的平分线AD,AC=BC,∠C=90°,
∴∠CAD=∠DAB=22.5°,∠ABC=45°,
∵BE垂直AD于E,
∴∠DAB+∠ABC+∠DBE=90°,即∠DBE=22.5°,
∴∠CAD=∠DBE,
又∵AC=BC,且∠ACB=∠BCM=90°,
∴△ACD≌△BCM(ASA),
∴AD=BM②;
由①②得AD=2BE,
即BE=
1 |
2 |
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点