题目
如图,A,B是函数y=e^2x的图像上两点,分别过A,B作x轴的平行线与函数y=e^x的图像交与C,D两点
求点A与原点O连成直线的斜率取值范围
若直线AB过原点O,求证直线CD也过原点
求点A与原点O连成直线的斜率取值范围
若直线AB过原点O,求证直线CD也过原点
提问时间:2020-12-22
答案
设在函数 y=e^2x 上的两点坐标分别为A (x1,e^(2x1)),B(x2,e^(2x2))
这两点所成直线过原点,所以直线方程为
y=[e^(2x2)-e^(2x1)]/(x2-x1) * x
当AB两点重合的时候,AB为过原点的函数y=e^2x的切线
y'=2e^2x (1)
设该切线方程为y=kx,设切点为(x',e^2x')则
e^2x'=2x'e^2x'
2x'=1
x'=0.5
带入(1)得此时斜率为2e,此为斜率的最小值
设x2>x1,当AB不重合的时候斜率为[e^(2x2)-e^(2x1)]/(x2-x1),x1无穷大的时候,斜率[e^(2x2)-e^(2x1)]/(x2-x1)的极限为无穷大,所以,斜率的取值范围是
[2e,正无穷)
y=e^x 上两点的坐标为 C(2x1,e^(2x1) D(2x2,e^(2x2))
设这两点所成直线为y=kx+b
k=[e^(2x2)-e^(2x1)]/[2(x2-x1)]
带入点C(2x1,e^(2x1) 得到:
e^(2x1)=[e^(2x2)-e^(2x1)]/[2(x2-x1)] * 2x1 + b
化简得到b=0
所以CD过原点.
这两点所成直线过原点,所以直线方程为
y=[e^(2x2)-e^(2x1)]/(x2-x1) * x
当AB两点重合的时候,AB为过原点的函数y=e^2x的切线
y'=2e^2x (1)
设该切线方程为y=kx,设切点为(x',e^2x')则
e^2x'=2x'e^2x'
2x'=1
x'=0.5
带入(1)得此时斜率为2e,此为斜率的最小值
设x2>x1,当AB不重合的时候斜率为[e^(2x2)-e^(2x1)]/(x2-x1),x1无穷大的时候,斜率[e^(2x2)-e^(2x1)]/(x2-x1)的极限为无穷大,所以,斜率的取值范围是
[2e,正无穷)
y=e^x 上两点的坐标为 C(2x1,e^(2x1) D(2x2,e^(2x2))
设这两点所成直线为y=kx+b
k=[e^(2x2)-e^(2x1)]/[2(x2-x1)]
带入点C(2x1,e^(2x1) 得到:
e^(2x1)=[e^(2x2)-e^(2x1)]/[2(x2-x1)] * 2x1 + b
化简得到b=0
所以CD过原点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1在表格但的空格内填入合适的数,使得横行与竖列的四个数之和相等
- 2把下列文章翻译成英语
- 3但我解不出来
- 4小明和小丽共收集邮票171枚,已知小明收集的3/4和小丽收集的3/5相等,小明和小丽分别收集多少邮票?
- 53、选择最佳的答案 ( )1、There ________ some juice in
- 6甲乙两地相距120千米,快车每小时走72千米,慢车每小时走48千米,慢车在前,快车在后,若两车同时出发,快
- 7Is it sounds like a bird?
- 8On National Day we have a 7-day holiday.用介词on对吗
- 9they can( ) swim well【选择题】
- 10将3支红筷子,9支黄筷子,18支绿筷子,2支白筷子和一支黑筷子放在一个布袋里,至少摸几次才能保证
热门考点