当前位置: > 已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*).(1)求a2,a3,a4的值;(2)求数列{an}的通项an;(3)设数列{bn}满足bn=2/(n+2)an,求数列{b...
题目
已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an
(3)设数列{bn}满足bn=
2
(n+2)a

提问时间:2020-12-22

答案
(1)由a1=1,nan+1=2Sn(n∈N*)得,a2=2a1=2,2a3=2S2,则a3=a1+a2=3,
由3a4=2S3=2(a1+a2+a3),得a4=4;
(2)当n>1时,由nan+1=2Sn①,得(n-1)an=2Sn-1②,
①-②得nan+1-(n-1)an=2(Sn-Sn-1),化简得nan+1=(n+1)an
an+1
an
=
n+1
n
(n>1).
∴a2=2,
a3
a2
=
3
2
,…,
an
an-1
=
n
n-1

以上(n-1)个式子相乘得an=2×
3
2
×…×
n
n-1
=n
(n>1),
又a1=1,∴an=n(n∈N*)
(3)∵bn=
2
(n+2)an
=
2
(n+2)n
=
1
n
-
1
n+2

Tn=
1
1
-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-2
-
1
n
+
1
n-1
-
1
n+1
+
1
n
-
1
n+2

=1+
1
2
-
1
n+1
-
1
n+2
=
3
2
-
2n+3
(n+1)(n+2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.