当前位置: > 设a,b都是正实数,2a+b=1,则S=2*根号下ab-4a2-b2的最小值是多少...
题目
设a,b都是正实数,2a+b=1,则S=2*根号下ab-4a2-b2的最小值是多少

提问时间:2020-12-21

答案
最小值为根号2.过程如下:
b=1-2a
a*b-4*a*a-b*b
=a*(1-2a)-4*a*a-(1-2a)(1-2a)
=1-2aa-4aa-1+4a-4aa
=-8aa+4a
=4a(1-2a)
=4ab
s=2*根号下(4ab)=4*根号下(ab)
而2a+b=1>=2*根号下(2ab)即 根号下(2ab)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.