当前位置: > 高数里如何用二重积分求曲面围成的体积有下列曲面 z=x^2+y^2 ,x+y=4,x=0,y=0,z=0围成的体积,...
题目
高数里如何用二重积分求曲面围成的体积有下列曲面 z=x^2+y^2 ,x+y=4,x=0,y=0,z=0围成的体积,

提问时间:2020-12-21

答案
将z=x^2+y^2作为被积函数V = ∫∫ x^2+y^2 ds 积分区域D由 x+y=4,x=0,y=0,z=0,确定=∫ dy ∫ x^2+y^2 dx (积分上下限:x下限0,上限4-y;y下限0,上限4)=∫ 2(y^3-32y+64)/3dy = (y^4-64y^2+256y)/6 | (y下限0,上限4)=...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.