当前位置: > 求复数z=1+((√3+i)/2)^7的模和辐角主值.求大师详解...
题目
求复数z=1+((√3+i)/2)^7的模和辐角主值.求大师详解

提问时间:2020-12-21

答案
这个要记住常用三角函数的值的
cos(π/6)=√3/2
sin(π/6)=1/2
从而
(√3+i)/2=cos(π/6)+isin(π/6)=exp(iπ/6)
z=1+[exp(iπ/6)]^7=1+exp(i*7π/6)=1-exp(iπ/6)=1-(√3+i)/2=(1-√3/2)-i/2
|z|=√(2-√3)=√((4-2√3)/2)=√((1-2√3+3)/2)=√((√3-1)^2/2)=(√3-1)/√2=(√6-√2)/2
arg z = -arctan(2-√3) = -π/12
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.