当前位置: > 设a∈R,函数f(x)=ax^2+x-a(-1≤x≤1),求a的值,使函数f(x)有最大值17/8...
题目
设a∈R,函数f(x)=ax^2+x-a(-1≤x≤1),求a的值,使函数f(x)有最大值17/8

提问时间:2020-12-21

答案
当a>0时,f(x)为开口向上的曲线,在【-1,1】区间的最大值必为f(-1) 或f(1)
将x=-1,x=1分别代入,得出
f(-1) = -1
f(1) = 1
不符合条件,最大值条件
当a=0时,f(x)为直线,最大值为1,也不符合条件
所以a
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.