当前位置: > 已知函数f(x)=(x-a)lnx (a》0),当x属于 [1,2e]时,|f(x)|≤e恒成立,求实数a的取值范围...
题目
已知函数f(x)=(x-a)lnx (a》0),当x属于 [1,2e]时,|f(x)|≤e恒成立,求实数a的取值范围
如果可以扣分的话…我一定要把那些复制粘贴错误答案的人的分扣光…

提问时间:2020-12-21

答案
当x属于 [1,2e]时,lnx>0
1,若a《1,
f(x)>0,|f(x)|max=|f(x)|x=2e=(2e-a)*ln2e>(2e-1)*ln2e>e恒不成立
2,若a》2e,|f(x)|max=|f(x)|x=2e
=(a-2e)*ln2e《e
化简的a《e*[2+1/(ln2e)]
显然e*[2+1/(ln2e)]》2e
所以2e《a《e*[2+1/(ln2e)]
3,若1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.