当前位置: > 如何证明样本均值数学期望等于总体均值?...
题目
如何证明样本均值数学期望等于总体均值?

提问时间:2020-12-21

答案
总体方差为σ²,均值为μ S=[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]/(n-1) X表示样本均值=(X1+X2+...+Xn)/n 设A=(X1-X)^2+(X2-X)^2.+(Xn-X)^2 E(A)=E[(X1-X)^2+(X2-X)^2.+(Xn-X)^2] =E[(X1)^2-2X*X1+X^2+(X2)^2-2X*X2+X^...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.