题目
已知矩阵A,求可逆阵P,使得(P^-1)AP为对角阵
A= [2,0,0
0,1,-1
0,-1,1]
A= [2,0,0
0,1,-1
0,-1,1]
提问时间:2020-12-20
答案
|A-λE| = -λ(2-λ)^2
所以A的特征值为0,2,2
解得 AX=0 的基础解系:a1=(0,1,1)'
解得 (A-2E)X=0 的基础解系:a2=(1,0,0)',a3=(0,1,-1)'
令P=(a1,a2,a3)=
0 1 0
1 0 1
1 0 -1
则P可逆,且P^-1AP = diag(0,2,2).
所以A的特征值为0,2,2
解得 AX=0 的基础解系:a1=(0,1,1)'
解得 (A-2E)X=0 的基础解系:a2=(1,0,0)',a3=(0,1,-1)'
令P=(a1,a2,a3)=
0 1 0
1 0 1
1 0 -1
则P可逆,且P^-1AP = diag(0,2,2).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点