当前位置: > 高数一阶微分方程问题...
题目
高数一阶微分方程问题
设函数y=u(x)(1+x)^2是微分方程y'-2y/x+1=(x+1)^2的通解,求u(x).
顺便问一下,-1/(x+1)的积分是多少?

提问时间:2020-12-20

答案
y' = 2u(x)(1+x) + u'(x)(1+x)^2.
y'-2y/x+1=(x+1)^2
2u(x)(1+x) + u'(x)(1+x)^2 - 2u(x)(1+x) = (x+1)^2
(u'(x)-1)(x+1)^2=0
所以u'(x)=1,u(x)=x+C.
-1/(x+1)的积分为 -ln(x+1) + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.