当前位置: > 能否将钟表上的12个数字1,2,3,…12重新排列,使每两个相邻的数之和是 完全平方数?...
题目
能否将钟表上的12个数字1,2,3,…12重新排列,使每两个相邻的数之和是 完全平方数?

提问时间:2020-12-20

答案
4 = 1 + 3
9 = 1 + 8 = 2 + 7 = 3 + 6 = 4 + 5
16 = 4 + 12 = 5 + 11 = 6 + 10 = 7 + 9
推得可能的紧邻关系有:
(4、12),(4、5),
(1、3),(1、8),
(2、7),(7、9),
(6、10),(3、6),
(5、11),
可以在排列的中间(非两端)的数(也就是至少在2个紧邻关系中出现的数)只有:
1、3、4、5、6、7这6个.
而要构成一个排列,非两端的数必须至少有10个,显然不符合.
因此不存在这样一个排列,使得每两个相邻的数之和是完全平方数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.