当前位置: > 计算对坐标的曲线积分∫c xy^2dy-x^2ydx ,其中C是圆周 上从点A(2,0)到点B(-2,0)的一段弧....
题目
计算对坐标的曲线积分∫c xy^2dy-x^2ydx ,其中C是圆周 上从点A(2,0)到点B(-2,0)的一段弧.

提问时间:2020-12-20

答案
方法一:格林公式
对圆周补线段AB:y=0,x:-2--->2,这样c+AB就是封闭曲线了
∮(c+AB) xy²dy-x²ydx
=∫∫(y²+x²)dxdy 积分区域为:x²+y²=2,上半圆
用极坐标
=∫[0--->π]dθ∫[0--->√2] r³dr
=π*(1/4)r⁴ |[0--->√2]

下面计算AB上的积分
∫(AB) xy^2dy-x^2ydx=∫[-2---->2] 0dx=0
因此原积分=π-0=π
方法二:将c写为参数方程得:x=√2cost,y=√2sint,t:0---->π
代入原积分:
∫c xy^2dy-x^2ydx
=∫[0--->π] (4cos²tsin²t+4cos²tsin²t)dt
=2∫[0--->π] sin²2tdt
=∫[0--->π] (1-cos4t)dt
=t-1/4sin4t |[0--->π]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.