当前位置: > 已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为...
题目
已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为
解析中有一点不清楚:
解析是这样的: 过CD作平面PCD,使AB⊥平面PCD,交AB与P,
设点P到CD的距离为h ,
则有 V=1/3×2×h×1/2×2,
当直径通过AB与CD的中点时,h最大为2√3 ,故 V最大4√3/3
为什么当直径通过AB与CD的中点时,h取最大?
题目和解析都也没图..

提问时间:2020-12-20

答案
用这个方法算吧设AB的中点为P,CD的中点为Q,球心为O.易知P,Q必在一个球心也为O但半径比球O小的球面上(即较小一点的同心球),设其半径为r.设CD与平面ABQ所成的角为a,设PQ与AB所成角为b,则有V_(ABCD)=(1/3)*S_(ABQ)*CD...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.