当前位置: > 如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数....
题目
如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数.

提问时间:2020-12-20

答案
如图,连接AC,
在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
∠B=∠ACF
AB=AC
∠BAE=∠CAF

∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+20°,
解得∠CEF=20°.
连接AC,判断出△ABC是等边三角形,根据等边三角形的性质可得AB=AC,然后求出∠BAE=∠CAF,再利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等可得AE=AF,从而判断出△AEF是等边三角形,根据等边三角形的性质可得∠AEF=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理可得∠CEF=∠BAE.

菱形的性质.

本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键,也是本题的难点.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.