当前位置: > 求定积分√(2-x^2),上限为√2,下限为0...
题目
求定积分√(2-x^2),上限为√2,下限为0
设t=√(2-x^2),x=√(2-t^2),dx=[(2-x^2)]^(-1/2)dt;当x=0,t=√2,当x=√2,t=0;
∫_0^√2[√(2-x^2)]dx=∫_√2^0{t[(2-x^2)]^(-1/2)}dt
=(-1/2)∫_√2^0{[(2-x^2)]^(-1/2)}d(2-x^2)
=(-1/2)[2-x^2](上为0,下为√2)
=-√2
(∫_0^√2表示定积分上限为√2,下限为0∫)
注:这是我做出的结果,但标准答案为∏/2,请找出我哪个步骤错了,并提示思路.

提问时间:2020-12-20

答案
你的错误在:“dx=[(2-x^2)]^(-1/2)dt”!而且,中间的字母变换也搞混淆了.正确的是:“dx=-tdt/√(2-t²)”!你这种思路完全错误了,反而把原定积分变换复杂了.正切的解法如下:设x=√2sint,则dx=√2costdt.(说明:...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.