当前位置: > an=3n+2 ,设an=log2bn,证明{bn}是等比数列,并求其前n项和Tn...
题目
an=3n+2 ,设an=log2bn,证明{bn}是等比数列,并求其前n项和Tn

提问时间:2020-12-20

答案
因为{an}是等差数列,所以a(n+1)-an=d
log2b(n+1)-log2bn=d
log2(b(n+1)/bn)=d
所以b(n+1)/bn是常数,所以{bn}是等比.
b(n+1)/bn=2^d=2^3=8=q
a1=log2b1
所以b1=32
前n项和Tn=b1(1-q^n)/(1-q)=32*(1-8^n)/(1-8)=(32/7)(8^n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.