当前位置: > 已知函数f(x)=x^3-x在(0,a]上递减,在[a,+∞)上递增,求a的取值范围....
题目
已知函数f(x)=x^3-x在(0,a]上递减,在[a,+∞)上递增,求a的取值范围.

提问时间:2020-12-20

答案
0减函数
则f(b)-f(c)>0
b^3-b-c^3+c
=(b-c)(b^2+bc+c^2)-(b-c)
=(b-c)(b^2+bc+c^2-1)>0
b-c<0
所以b^2+bc+c^2-1<0
(b+c/2)^2+3c^2/4-1<0
0所以(b+c/2)^2+3c^2/4-1小于b=c=a时的值
即小于3a^2-1,
又(b+c/2)^2+3c^2/4-1<0
所以3a^2-1<=0
a^2<=1/3
同理
b>c>=a
增,f(b)>f(c)
b^3-b-c^3+c
=(b-c)(b^2+bc+c^2-1)>0
b-c>0
所以b^2+bc+c^2-1>0
(b+c/2)^2+3c^2/4-1>0
b>c>=a
所以区间在对称轴b=-c/2右边,递增
所以(b+c/2)^2+3c^2/4-1大于b=c=a的值
所以(b+c/2)^2+3c^2/4-1>3a^2-1
所以3a^2-1>=0
a^2>=1/3
综上则只有a^2=1/3
由区间(0,a],a>0
所以a=√3/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.