当前位置: > 设f(x)是整系数多项式且f(0),f(1)都是奇数,证明f(x)没有有理根...
题目
设f(x)是整系数多项式且f(0),f(1)都是奇数,证明f(x)没有有理根

提问时间:2020-12-20

答案
假设f(x)有有理根a,则f(x)=(x-a)g(x),g(x)为整系数多项式,
因为f(0)=-ag(0)为奇数,所以a为奇数,
又f(1)=-(a-1)g(1)为奇数,所以a-1为奇数;所以,a-1,a都为奇数,这与相邻两整数一奇一偶矛盾.
所以,假设不成立,
所以,f(x)无有理根.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.