当前位置: > 用反证法证明:等腰三角形的底角都是锐角....
题目
用反证法证明:等腰三角形的底角都是锐角.
请特别详细(对于反证法本人一窍不通).

提问时间:2020-12-19

答案
证明:假设等腰三角形的底角非锐角,
则根据等角对等边,可知:两底角相等.均为非锐角.
而三角形内角和为180度.
两底角相加和已大于等于180度.
不符合客观事实.无法构成三角形.
因此假设不成立.
所以等腰三角形的底角是锐角.
原命题得证.
记得采纳和赞哦!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.