当前位置: > 已知函数f(x)=cos(π/2+2x)+cos(2x) 1)求函数y=f(x)的单调递减区间...
题目
已知函数f(x)=cos(π/2+2x)+cos(2x) 1)求函数y=f(x)的单调递减区间
2)若f(α-π/8)=根号2/3,求f(2α+π/8)的值

提问时间:2020-12-19

答案
1、f(x)=-cos(π-π/2-2x)+cos2x
=-cos(π/2-2x)+cos2x
=cos2x-sin2x
=√2[cos2x(√2/2)-sin2x(√2/2)]
=√2cos(2x+π/4),
2kπ<=2x+π/4<=2kπ+π,函数为单调减函数,
则2kπ-π/4<=2x<=2kπ+3π/4,
∴kπ-π/8<=x<=kπ+3π/8,(k∈Z),为单调递减区间.
2、f(α-π/8)=√2cos(2α-π/4+π/4)=√2cos2α=√2/3,
cos2α=1/3,
sin 2α=±√(1-1/9)=±2√2/3,
2α∈[2kπ,2kπ+π]为正,
即α∈[kπ,kπ+π/2]为正,
α∈[kπ-π/2,kπ]为负,
f(2α+π/8)=√2cos[4α+π/4+π/4)
=√2cos[4α+π/2)
=-√2cos(π-4α-π/2)
=-√2cos(π/2-4α)
=-√2sin4α
=-√2*2sin(2α)cos(2α)
=-2√2(±2√2/3)*(1/3)
=±8/9.
α∈[kπ,kπ+π/2]为负,
α∈[kπ-π/2,kπ]为正.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.