当前位置: > sin(a-b)=3/5,cos(a+b)=5/13且a b都是锐角求cos2a和cos2b...
题目
sin(a-b)=3/5,cos(a+b)=5/13且a b都是锐角求cos2a和cos2b

提问时间:2020-12-19

答案
a b都是锐角
即0-π/20所以cos(a-b)>0 sin(a+b)>0
cos(a-b)=√[1-(sin(a-b))^2]=4/5
sin(a+b)=√[1-(cos(a+b))^2]=12/13
cos2a=cos(a+b+a-b)
=cos(a+b)cos(a-b)-sin(a+b)sin(a-b)
=5/13*4/5-12/13*3/5
=-16/65
cos2b=cos(a+b-(a-b))
=cos(a+b)cos(a-b)+sin(a+b)sin(a-b)
=5/13*4/5+12/13*3/5
=56/65
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.