当前位置: > 已知:如图,梯形ABCD中,AB∥DC,E是腰DA的中点,且AB+DC=BC, 求证:BE⊥CE....
题目
已知:如图,梯形ABCD中,AB∥DC,E是腰DA的中点,且AB+DC=BC,
求证:BE⊥CE.

提问时间:2020-12-19

答案
证明:延长BE交CD的延长线于F.
∵AB∥CD,
∴∠DFE=∠ABE,∠FDE=∠A.
又E为DA的中点,
∴△ABE≌△DFE.
∴AB=DF,EF=EB.
∵BC=DC+AB,CF=DF+DC,
∴BC=CF.
∴BE⊥EC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.