当前位置: > 两个非零向量OA,OB不共线,且OP=mOA,OQ=nOB,直线PQ过△OAB的重心,则m,n满足...
题目
两个非零向量OA,OB不共线,且OP=mOA,OQ=nOB,直线PQ过△OAB的重心,则m,n满足
A.m+n=3/2 b.m=1,n=1/2 c.1/m+1/n=3 d以上全不对

提问时间:2020-12-19

答案
设三角形OAB重心为 G ,则 OG=1/3*(OA+OB)=1/(3m)*OP+1/(3n)*OQ ,
由于 P、G、Q 共线 ,因此 1/(3m)+1/(3n)=1 ,
所以 1/m+1/n=3 .
选 C .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.