题目
在长江某处一座桥的维修工程中,拟由甲、乙两个工程队共同完成某项目.从两个工程队的资料可以知道:若两个工程队合作24天恰好完成;若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成,请问:
(1)甲、乙两个工程队单独完成该项目各需多少天?
(2)又已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元.要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?
(1)甲、乙两个工程队单独完成该项目各需多少天?
(2)又已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元.要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?
提问时间:2020-12-19
答案
(1)设甲工程队单独完成此项目需x天,乙工程队单独完成此项目需y天.
依题意得:
.
解得:
.
经检验,
是原方程的解,且符合题意.
答:甲工程队单独完成此项目需40天,乙工程队单独完成此项目需60天.
(2)设甲工程队施工a天,乙工程队施工b天时,总的施工费用不超过22万元.
根据题意得:
.
解得:b≥40.
答:要使该项目总的施工费用不超过22万元,乙工程队最少施工40天.
依题意得:
|
解得:
|
经检验,
|
答:甲工程队单独完成此项目需40天,乙工程队单独完成此项目需60天.
(2)设甲工程队施工a天,乙工程队施工b天时,总的施工费用不超过22万元.
根据题意得:
|
解得:b≥40.
答:要使该项目总的施工费用不超过22万元,乙工程队最少施工40天.
(1)本题是一个有关于二元一次的分式方程.若两个工程队合作24天恰好完成;若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成.可得出两个等量关系:甲24天完成工作量+乙24天工作量=1;甲乙合作18天的工作量+甲单独做10天的工作量=1,由此可列出方程组求解.
(2)可由甲乙两队的工作量之和为1及总费用不超过22万元两个关系进行分析.
(2)可由甲乙两队的工作量之和为1及总费用不超过22万元两个关系进行分析.
分式方程的应用.
本题考查了分式方程的应用.列方程解应用题的步骤是:一审(审题)二设(设出相应未知数)三列(根据等量关系和所设未知数列出方程)四解(解方程)五检验(检验是否是方程的解,是否符合实际问题含义)六回答(根据所问的进行回答),其中审题时找出等量关系是列方程解决实际问题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1计算:(2×10^-5)^2÷(3×10^-2)^-2
- 2假如是A你的家,是B你的学校,请你根据图示运用本单元知识描述一下你是如何上学的英语短文
- 3有甲、乙两杯不同的液体.把同一个鸡蛋放入甲杯时下沉,放入乙杯时漂浮.由此可知,_杯中的液体对鸡蛋的浮力大.
- 4硅酸钠与2分子的碳酸和雨1分子的碳酸反应有什么不同
- 5根据首字母填空:She can c____ from one to one hundred now.
- 6软体动物的河蚌和螺类具有坚硬外壳的生物学意义
- 7函数y=老哥以十为底(1+x分之2-1)的图像关于 对称
- 8形容情况紧急的成语
- 9关于描写玉兰花的作文
- 10修一条路,甲队单独修6个月完成,乙队单独修8个月完成,甲乙两队工作时间的比是_﹕_,工作效率的比是_﹕_.
热门考点