题目
Bernoulli不等式:(1+x)^r>1+rx对于所有的r>1或r=-1且x不等于0成立.如何用导数证明?
提问时间:2020-12-19
答案
这道题主要是利用求导判断单调性.
令函数f(x)=(1+x)^r-(1+rx)
先求导得f'(x)=r*(1+x)^(r-1)-r=r*[(1+x)^(r-1)-1]
讨论:
(1)当r>1时,(1+x)^(r-1)>1,则f'(x)>0
因此f(x)在R上是单调递增.
由于x>=-1且x不等于0,而且f(-1)=r-1>0
所以r>1,x>=-1且x不等于0,有f(x)>0
即有(1+x)^r>1+rx成立!
(2)当r0
因此f(x)在(0,正无穷大)上是单调递增.
这样在r=-1且x不等于0时,f(x)最小值为f(0)=0
因此在r=-1且x不等于0时,f(x)>0,
即(1+x)^r>1+rx成立.
综上所述:(1+x)^r>1+rx对于所有的r>1或r=-1且x不等于0成立.
令函数f(x)=(1+x)^r-(1+rx)
先求导得f'(x)=r*(1+x)^(r-1)-r=r*[(1+x)^(r-1)-1]
讨论:
(1)当r>1时,(1+x)^(r-1)>1,则f'(x)>0
因此f(x)在R上是单调递增.
由于x>=-1且x不等于0,而且f(-1)=r-1>0
所以r>1,x>=-1且x不等于0,有f(x)>0
即有(1+x)^r>1+rx成立!
(2)当r0
因此f(x)在(0,正无穷大)上是单调递增.
这样在r=-1且x不等于0时,f(x)最小值为f(0)=0
因此在r=-1且x不等于0时,f(x)>0,
即(1+x)^r>1+rx成立.
综上所述:(1+x)^r>1+rx对于所有的r>1或r=-1且x不等于0成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 16.her dream is to be a famous ( act)in five years.
- 2请问为什么Ax2+bx+c>=0, 则b2-4ac
- 3使用《中国期刊全文数据库》任选一课题检索有关文献,写出文献检索报告!
- 4简述食用菌在我国农业中的地位和作用及发展食用菌的意义?
- 5五年级分数加减法混合运算
- 6高明的琴师阅读答案,
- 7函数y=2−x+lgx的定义域是_.
- 8等倾干涉为圆条纹,等厚干涉为直条纹这句话对么?如果对的话为什么牛顿环等候干涉是圆条纹的?
- 9是否存在常数abc使得等式1^2-2^2+3^2-4^2+...+[(-1)^n-1]*n^2=[(-1)^n-1]*(an^2+bn+c)
- 10这个幂指函数如何求导