当前位置: > 求证:cosx+cos2x+...+cosnx={[cos(n+1)x/2]*[sin(n/2)x]}/[sin(x/2)]...
题目
求证:cosx+cos2x+...+cosnx={[cos(n+1)x/2]*[sin(n/2)x]}/[sin(x/2)]

提问时间:2020-12-19

答案
cosx+cos2x+...+cosnx=1/2[(cosx+cosnx)+(cos2x+cos(n-1)x)+...+(cosnx+cosx)]=[cos(n+1)x/2][cos((n-1)x/2)+cos(((n-3)x/2)+...+cos((n-(2n-1))x/2)=[cos(n+1)x/2/sin(x/2)]*[sin(x/2)*cos((n-1)x/2)+sin(x/2)*cos(((n-3)x/2)+...+sin(x/2)*cos((n-(2n-1))x/2)=1/2[cos(n+1)x/2/sin(x/2)][sin(nx/2)+sin((2-n)x/2)+sin((n-2)x/2)+sin((4-n)x/2)+...+sin((2-n)x/2)+sin(nx/2)]={[cos(n+1)x/2]*[sin(n/2)x]}/[sin(x/2)]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.