当前位置: > 高数的问题之可降阶的高阶微分方程...
题目
高数的问题之可降阶的高阶微分方程
Y''=1+Y'^2 这个为什么是按照第二类Y''=f(X,Y')型来计算,而不是按照第三类Y''=f(Y,Y')型来计算呢
被这个问题困惑好几天了...

提问时间:2020-12-18

答案
当然,如果按第三类一样可以求得,
令 Y'=p 则 Y"=dp/dx=dp/dy*dy/dx=p*dp/dy
Y''=1+Y'^2可化为 p*dp/dy=1+p^2
即:p*dp/(1+p^2)=1
两端同时积分有:1/2*(1+p^2)=p+C
继而可求出解来.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.