题目
如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.
提问时间:2020-12-18
答案
证明:在△ABC中,
∵∠BAC=45°,CE⊥AB,
∴AE=CE,∠EAH=∠ECB,
在△AEH和△CEB中,
,
∴△AEH≌△CEB(ASA),
∴AH=BC,
∵BC=BD+CD,且BD=CD,
∴BC=2BD,
∴AH=2BD.
∵∠BAC=45°,CE⊥AB,
∴AE=CE,∠EAH=∠ECB,
在△AEH和△CEB中,
|
∴△AEH≌△CEB(ASA),
∴AH=BC,
∵BC=BD+CD,且BD=CD,
∴BC=2BD,
∴AH=2BD.
由在△ABC中,AB=AC,∠BAC=45°,可得AE=CE,∠EAH=∠ECB,继而证得△AEH≌△CEB,然后由全等三角形的性质,证得结论.
全等三角形的判定与性质.
此题考查了全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点