题目
用数学归纳法证明 n大于等于10时,2^n>n^3
提问时间:2020-12-18
答案
证明:(1)当n=10时,2^n=1024>1000=n^3,∴结论对n=10成立
(2)假设结论对一切n大于等于10皆成立,即有2^n>n^3,
则对n+1,左边为2^(n+1)=2*2^n=2^n+2^n,右边为(n+1)^3=n^3+3n^2+3n+1,左边减右边=(2^n+2^n)-(n^3+3n^2+3n+1),由(2)知(2^n-n^3)>0,故只须证(2^n-3n^2-3n-1)>0对n>10皆成立,即2^n>3n^2+3n+1,又1>3n^2+3n+1/2^n(这是因为n趋于无穷时不等式右边极限为零,且右边是关于n的单调递减数列,故n=10时,1>3n^2+3n+1/2^n,所以n>10时更加成立)这个不等式两边同乘以2^n即证得所要证的不等式.
(2)假设结论对一切n大于等于10皆成立,即有2^n>n^3,
则对n+1,左边为2^(n+1)=2*2^n=2^n+2^n,右边为(n+1)^3=n^3+3n^2+3n+1,左边减右边=(2^n+2^n)-(n^3+3n^2+3n+1),由(2)知(2^n-n^3)>0,故只须证(2^n-3n^2-3n-1)>0对n>10皆成立,即2^n>3n^2+3n+1,又1>3n^2+3n+1/2^n(这是因为n趋于无穷时不等式右边极限为零,且右边是关于n的单调递减数列,故n=10时,1>3n^2+3n+1/2^n,所以n>10时更加成立)这个不等式两边同乘以2^n即证得所要证的不等式.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1there,many,sky,are,stars,in,the.连词成句
- 2美就在身旁400字作文
- 3一个铝球的质量为67.5g,体积为30cm,问这个球是空心还是实心?已知铝的密度为2.7乘10的三次方,
- 4用两根长均为24厘米的铁丝分别围成一个长与宽之比为2:1的长方形和一个正方形,
- 5小明看一本240页的故事书,第一天看了全书的3/8,第二天看了余下的2/5,还剩多少页没有看?
- 6某型号高脚杯的曲面是由一幂函数在X轴上侧部分沿着Y轴旋转一周得到.高脚杯的高度为9CM,曲面底部的高度为5CM,上缘面所在圆的半径是2倍2的开3次方CM.求该幂函数的表达式``
- 7阅读(浏览)时速度比默读时快那么多是什么原因呢?
- 8已知:2x+6x-4=0,求代数式(3-x/2x^2-4x)/(5/x-2-x-x)的值
- 9一个长方体它的侧面展开后正好是一个正方形,它的底面是面积为19平方厘米的正方形,求这个长方体的表面积
- 10小李同学在探究摩擦力与哪些因素有关