题目
求通过直线2x+y+4=0及圆C:x^+y^+2x-4y+1=0的交点,并且有最小面积的方程!
提问时间:2020-12-18
答案
2x+y+4=0 (1)
x^+y^+2x-4y+1=0 (2)
由(1)得,y=-2x-4 (3)
将(3)代入(2),得5x^2+26x+33=0 (4)
解方程(4),得x=-11/5,或x=-3
根据(3),得 y=2/5,或y=2
故直线2x+y+4=0与圆x^+y^+2x-4y+1=0的交点为(-11/5,2/5),(-3,2)
要使过这两点(-11/5,2/5),(-3,2)的圆的面积最小,这两点之间的线段必须是该圆的直径,并且圆心是此线段的中点.
根据两点距离公式,得(-11/5,2/5),(-3,2)两点之间的线段长:
d=√((-11/5+3)^2+(2/5-2)^2 )=(4√5)/5
所求圆的半径r=d/2=(2√5)/5
圆心的位置:x=(-11/5-3)/2=-13/5,y=(2/5+2)/2=6/5
所求圆的方程为:(x+13/5)^2+(y-6/5)^2=((2√5)/5)^2
x^+y^+2x-4y+1=0 (2)
由(1)得,y=-2x-4 (3)
将(3)代入(2),得5x^2+26x+33=0 (4)
解方程(4),得x=-11/5,或x=-3
根据(3),得 y=2/5,或y=2
故直线2x+y+4=0与圆x^+y^+2x-4y+1=0的交点为(-11/5,2/5),(-3,2)
要使过这两点(-11/5,2/5),(-3,2)的圆的面积最小,这两点之间的线段必须是该圆的直径,并且圆心是此线段的中点.
根据两点距离公式,得(-11/5,2/5),(-3,2)两点之间的线段长:
d=√((-11/5+3)^2+(2/5-2)^2 )=(4√5)/5
所求圆的半径r=d/2=(2√5)/5
圆心的位置:x=(-11/5-3)/2=-13/5,y=(2/5+2)/2=6/5
所求圆的方程为:(x+13/5)^2+(y-6/5)^2=((2√5)/5)^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1金属与非金属的本质区别是什么
- 2华丽点得...能充分表现出内心愤怒到极点的句子
- 3问小灯的电阻用一段后怎么的
- 4空气中氧气的含量,点燃红磷,生成了五氧化二磷固体,那为什么要在下面放水,是为了让它溶解吗?
- 5物理动量守恒这一块的问题
- 6为什么啄木鸟不怕震为什么啄木鸟不怕震 ① 啄木鸟为了觅食,总是不停地用坚硬的喙在树干上啄击,产生强烈
- 7以“今天的天气真热啊!”为开头写一段话
- 8对勾函数的两个顶点怎么求
- 9ArcGIS栅格计算器计算时为什么出现错误Syntax error at or near symbol
- 10Everything()fast in spring.a.begin b.grow c.grew d.grows