题目
化简:
(1)sin^2·α+cos^4·α+sin^2·αcos^2·α
(2)(1-cos^4·α-sin^4·α)/(1-cos^6·α-sin^4·α)
(1)sin^2·α+cos^4·α+sin^2·αcos^2·α
(2)(1-cos^4·α-sin^4·α)/(1-cos^6·α-sin^4·α)
提问时间:2020-12-17
答案
(1)sin^2·α+cos^4·α+sin^2·αcos^2·α
=sin^2·α+cos^2·α(cos^2·α+sin^2·α)
= sin^2·α+cos^2·α
=1
(2)(1-cos^4·α-sin^4·α)/(1-cos^6·α-sin^4·α)
=[(1+sin^2·α)(1-sin^2·α)-cos^4·α]/[(1+sin^2·α)(1-sin^2·α)-cos^6·α]
=[cos^2·α+cos^2·αsin^2·α-cos^4·α]/[cos^2·α+cos^2·αsin^2·α-cos^6·α]
=[cos^2·α(1-cos^2·α)+cos^2·αsin^2·α]/[cos^2·α(1-cos^4·α)+cos^2·αsin^2·α]
=[2cos^2·αsin^2·α]/[cos^2·α(1-cos^2·α)(1+cos^2·α)+cos^2·αsin^2·α]
=[2cos^2·αsin^2·α]/[cos^2·αsin^2·α(1+cos^2·α)+cos^2·αsin^2·α]
=[2cos^2·αsin^2·α]/[2cos^2·αsin^2·α+sin^2·αcos^4·α]
=2/[2+cos^2·α]
=sin^2·α+cos^2·α(cos^2·α+sin^2·α)
= sin^2·α+cos^2·α
=1
(2)(1-cos^4·α-sin^4·α)/(1-cos^6·α-sin^4·α)
=[(1+sin^2·α)(1-sin^2·α)-cos^4·α]/[(1+sin^2·α)(1-sin^2·α)-cos^6·α]
=[cos^2·α+cos^2·αsin^2·α-cos^4·α]/[cos^2·α+cos^2·αsin^2·α-cos^6·α]
=[cos^2·α(1-cos^2·α)+cos^2·αsin^2·α]/[cos^2·α(1-cos^4·α)+cos^2·αsin^2·α]
=[2cos^2·αsin^2·α]/[cos^2·α(1-cos^2·α)(1+cos^2·α)+cos^2·αsin^2·α]
=[2cos^2·αsin^2·α]/[cos^2·αsin^2·α(1+cos^2·α)+cos^2·αsin^2·α]
=[2cos^2·αsin^2·α]/[2cos^2·αsin^2·α+sin^2·αcos^4·α]
=2/[2+cos^2·α]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11.a,b两地相距540m.甲,乙两人同时从两地相向出发,5分钟后相遇,已知甲,乙两人速度的比是5:4,求甲,
- 2下面是艾青的两首诗,隐去诗题就成了两个谜语.请你分别给他们加上题目,这题目恰好是谜底.
- 3已知X,Y,Z为整数且X+Y+Z=1
- 4感恩老师的一句话,十字以上
- 5气体灭火系统中的计算问题
- 6函数y=cosx/2*sin(π/2+x/2)的最小正周期?
- 7若直线l与直线y=kx+b关于直线y=x对称的解析式是----
- 8music lunch cut中的u哪个读音不同
- 91.洗气装置什么样?操作上注意什么?
- 10Where is Mr Wang ?-He gone ti the library .He want to borrow some books.什么意思
热门考点