当前位置: > 已知三阶实对称矩阵A的每行元素之和都等于2,且R(2E+A)=1(1)求正交阵P,使得P-1AP为对角形矩阵?...
题目
已知三阶实对称矩阵A的每行元素之和都等于2,且R(2E+A)=1(1)求正交阵P,使得P-1AP为对角形矩阵?
(2)求A的m次方,其中m是大于等于1的自然数

提问时间:2020-12-17

答案
首先A的各行元素和为2,说明有一个特征向量x1 = (1,1,1)^T,特征值为2又r(2E+A) = 1,说明方程(A+2E)x = 0有两个线性无关解x2,x3,所以x2,x3是A的特征值为-2的特征向量.这样我们找出了所有特征向量和特征值.因为正交阵P...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.