当前位置: > “a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件...
题目
“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件

提问时间:2020-12-17

答案
当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.
当a<0时,f(x)=(−ax+1)x=−a(x−
1
a
)x

结合二次函数图象可知函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax-1)x|,其图象如图

它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.