题目
“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
提问时间:2020-12-17
答案
当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.
当a<0时,f(x)=(−ax+1)x=−a(x−
)x,
结合二次函数图象可知函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax-1)x|,其图象如图
它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.
当a<0时,f(x)=(−ax+1)x=−a(x−
1 |
a |
结合二次函数图象可知函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax-1)x|,其图象如图
它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知函数f(x)=lnx+kex (k为常数,e=2.71828…是自然对数的底数),
- 2边长是1000米的正方形的面积是一平方千米对吗?
- 3已知函数y=6x-2x^2-m的值恒小于0,则实数M的取值范围是?
- 4亲情的 二字形容词
- 5化简三角函数[sin(α+pi)*cos(pi+α)*cos(α+2pi)]/[tan(pi+α)*cos^3(-α-pi)]
- 6both ...and...连接的两个词作主语看作单数还是复数,both of...呢
- 7美国的富兰克林说过这样一句名言:“空袋子难以直立.”
- 8-x的3次方+2x的平方y的平方-xy
- 9一个圆柱形油缺罐原来高8分米,现在需要加高5分米,这样表面积会增加62.8平方分米,油罐现在的容积是多少升?
- 10对于任意正整数n 猜想2^n-1与(n+1)^2的大小关系?用导数证明!不要归纳法!