当前位置: > 证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B...
题目
证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

提问时间:2020-12-17

答案
若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上面的思路,存在正交矩阵T,B=T^(-1)RT,其中R=diag(b1,…bn)为B的标准型.B可...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.