当前位置: > 已知f1(x)=x+1,且fn=f1[f(n-1)(x)](n>1,n属于正实数)...
题目
已知f1(x)=x+1,且fn=f1[f(n-1)(x)](n>1,n属于正实数)
(1)求f2(x),f3(x)的表达式,猜想fn(x)(n属于正实数)的表达式并且用数学归纳法证明
(2)若关于x的函数y=x^2+f1(x)+f2(x)+...+fn(x)(n属于正实数)在区间(-∞,-1]上的最小值为12,求n的值

提问时间:2020-12-17

答案
(1)
f2=f1[f(2-1)(x)]=f1[f1(x)]=f1[x+1]=x+2
f3=f1[f(3-1)(x)]=f1[f2(x)]=f1[x+2]=x+3
猜想
fn=x+n
证明:设 对于k成立 则fk=x+k
f(k+1)=f1[f(k+1-1)x]=f1[x+k]=x+k+1
得证
(2)
y=x*x+x+1+x+2+...x+n
y=x*x+nx+n(n-1)/2 -------------a
若y有最小值 则y得导数为零
y'=2x+n=0
因为n>0
所以 n=-2x 代入a式y=x*x-2x*x-2x(-1-2x)/2=12
解得:x=3或-4
因为x<-1
所以x=-4 n=8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.