当前位置: > 正方形abcd的边长为1,∠dac的平分线交dc于点e,若点p.q分别是ad和ae上的动点则dq加pq的最小值是多少...
题目
正方形abcd的边长为1,∠dac的平分线交dc于点e,若点p.q分别是ad和ae上的动点则dq加pq的最小值是多少

提问时间:2020-12-17

答案
作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2√2 ,即DQ+PQ的最小值为2√2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.