当前位置: > 用bernoulli不等式证明:2^(1/n)-11)...
题目
用bernoulli不等式证明:2^(1/n)-11)
答完问题有追加分数30分~

提问时间:2020-12-17

答案
证明:由bernoulli不等式,有:
(1+x)^r>1+rx对于所有的r>1,x>0成立
现取 x = 1/n,r = n
得:(1+1/n)^n > 1+n*1/n = 2
故 1+1/n > 2^(1/n)
即 2^(1/n)-1 < 1/n
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.