题目
已知椭圆E经过点(2,3),对称轴为坐标轴,焦F1,F2在x轴上,离心率e=1/2 (1)求椭圆E的方程;(2)求角F
提问时间:2020-12-16
答案
角F.我上网找了下原题和答案.不知是不是你要的.
已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 e=1/2
(I)求椭圆E的方程;
(II)求角F1AF2的角平分线所在直线l的方程;
(III)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
(1):焦点在x轴且离心率为1/2的椭圆,其方程可设为x2/a2+4y2/3a2=1
带入x=2,y=3得a=4,所以椭圆方程是x2/16+y2/12=1
(2)焦点是F1(-2,0),F2(2,0)显然,也就是说F1AF2是直角三角形,三边长345
易求这个三角形内切圆半径是1,角F1F2A的角平分线斜率为-1,方程是y=-x+2.如果这个直线上存在一点位于三角形F1F2A内部且到x轴距离为1,那这个点一定是三角形内心,这个点易求是M(1,1),所以F1AF2的角平分线所在直线L即为直线AM,方程易求为L:y=2x-1
(3):假设这样两点存在,则过两点直线斜率为-1/2,设直线方程为y=-1/2x+b,与椭圆方程联立得x2-bx+b2-12=0.由于存在两个不同交点,故该方程判别式大于零,即b2-4(b2-12)>0,得-4
已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 e=1/2
(I)求椭圆E的方程;
(II)求角F1AF2的角平分线所在直线l的方程;
(III)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
(1):焦点在x轴且离心率为1/2的椭圆,其方程可设为x2/a2+4y2/3a2=1
带入x=2,y=3得a=4,所以椭圆方程是x2/16+y2/12=1
(2)焦点是F1(-2,0),F2(2,0)显然,也就是说F1AF2是直角三角形,三边长345
易求这个三角形内切圆半径是1,角F1F2A的角平分线斜率为-1,方程是y=-x+2.如果这个直线上存在一点位于三角形F1F2A内部且到x轴距离为1,那这个点一定是三角形内心,这个点易求是M(1,1),所以F1AF2的角平分线所在直线L即为直线AM,方程易求为L:y=2x-1
(3):假设这样两点存在,则过两点直线斜率为-1/2,设直线方程为y=-1/2x+b,与椭圆方程联立得x2-bx+b2-12=0.由于存在两个不同交点,故该方程判别式大于零,即b2-4(b2-12)>0,得-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在乘法里,积一定大于任何一个因数.错了吗
- 2若两个一次函数的k值互为相反数,则他们的特点是什么?互为倒数呢?
- 3在四边形ABCD中,AC⊥BD,EF//AC//HG,EH//BD//FG,试证明四边形EFGH是矩形.
- 4设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g)=- 2f(g)/g
- 5如图,射线OA的方向是_;射线OB的方向是_;射线OC的方向是_.
- 6并分析说明,
- 7人口自然增长率居首位的大州是什么州
- 8把一个棱长是5厘米的正方形铁块熔铸成一个10厘米,宽5厘米的长方体铁板.这块长方体铁板厚多少厘米?
- 9p( )t( )to 汉语意思:
- 10A的四次方-69A平方+2000=0怎么十字相乘啊.谁知道的= =.