题目
△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点做∠MDN=60°若∠MDN的两边分别交AB、AC边于M、N两点,连接M、N,求证:MN=BM+CN
提问时间:2020-12-16
答案
延长MB至G,使BG=CN,连接GD
1)
∵ △BDC是顶角∠BDC为120度的等腰△
∴ BD=DC,∠CBD=∠BCD=30度
∵ △ABC是等边△
∴ ∠ABC=∠ACB=60度
∴ ∠CBD+∠ABC=∠BCD+∠ACB=90度
∴ ∠ABD=∠ACD=90度
∵ ∠DBG=180-90=90度
∴ ∠DBE=∠ACD=90
∵ BD=DC,BE=CN
∴ △BGD≌△CND
∴ DE=DN,∠GDB=∠NDC
∴ ∠GDN=∠BDC
2)又
∵ ∠BDC=120度
∴ ∠GDN=∠BDC=120度
∵ ∠MDN=60度
∴ ∠GDM=120-60=60度
∴ ∠GDM=∠MDN
∵ DE=DN,DM=DM
∴ △GDM≌△NDM
∴ MN=MG
∵ MG=BM+BG,BG=CN
∴ MN=BM+CN
1)
∵ △BDC是顶角∠BDC为120度的等腰△
∴ BD=DC,∠CBD=∠BCD=30度
∵ △ABC是等边△
∴ ∠ABC=∠ACB=60度
∴ ∠CBD+∠ABC=∠BCD+∠ACB=90度
∴ ∠ABD=∠ACD=90度
∵ ∠DBG=180-90=90度
∴ ∠DBE=∠ACD=90
∵ BD=DC,BE=CN
∴ △BGD≌△CND
∴ DE=DN,∠GDB=∠NDC
∴ ∠GDN=∠BDC
2)又
∵ ∠BDC=120度
∴ ∠GDN=∠BDC=120度
∵ ∠MDN=60度
∴ ∠GDM=120-60=60度
∴ ∠GDM=∠MDN
∵ DE=DN,DM=DM
∴ △GDM≌△NDM
∴ MN=MG
∵ MG=BM+BG,BG=CN
∴ MN=BM+CN
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1嗯,读了《匆匆》你有什么感想二百字以以上.
- 2帮忙写一篇120字左右的英语小短文.
- 3下列说法正确的是()A 不存在最小的自然数,B 不存在最小的正有理数,C 存在最大的正有理数
- 4在运用.LC电路的周期公式解题时需要注意什么?
- 5小苗与大树的对话这几个问题,从中你收到的启示是
- 6hit me on my head 和hit me on the head有何区别
- 7If one worker can complete ajob in 6 days and asecond worker takes 12 days to complete the same job.
- 8把210的全部质因数的和为ab,那么a×b×ab等于多少(ab为一个数)
- 9加大接种量可以控制少量污染菌的污染,为什么是利用微生物间的拮抗关系而不是竞争关系?
- 106x^2+13x+5分解因式