题目
从圆x^2+y^2-4x-6y+12=0外一点P(x1,y1)向圆引切线,切点为M,O为坐标原点,且满足|PM|=|PO|,求使|PM|取最小值时点P的坐标.
提问时间:2020-12-16
答案
x^2+y^2-4x-6y+12=0,(x-2)^2+(y-3)^2=1
圆心Q(2,3),半径1
P(x,y),切线|PM|^2=(x-2)^2+(y-3)^2-1^2=x^2+y^2-4x-6y+12
|PO|^2=x^2+y^2
|PM|=|PO|,x^2+y^2-4x-6y+12=x^2+y^2
P在直线2x+3y-6=0上.
求|PM|最小,就是求|PO|最小
在直线2x+3y-6=0上取一点到原点距离最小.
由“垂线段最短”得,直线OP垂直直线2x+3y-6=0,
直线OP过原点且斜率为3/2,方程3x-2y=0
得交点P(12/13,18/13),这就是所求的点.
|PM|min = 36/13 .
圆心Q(2,3),半径1
P(x,y),切线|PM|^2=(x-2)^2+(y-3)^2-1^2=x^2+y^2-4x-6y+12
|PO|^2=x^2+y^2
|PM|=|PO|,x^2+y^2-4x-6y+12=x^2+y^2
P在直线2x+3y-6=0上.
求|PM|最小,就是求|PO|最小
在直线2x+3y-6=0上取一点到原点距离最小.
由“垂线段最短”得,直线OP垂直直线2x+3y-6=0,
直线OP过原点且斜率为3/2,方程3x-2y=0
得交点P(12/13,18/13),这就是所求的点.
|PM|min = 36/13 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Are you OK,Tommy?Yes,thanks 后面为什么使用thanks 而不是用thank 或者thanks you
- 2这将会直接影响我们的交货期 翻译 It will directly affect our date of delivery 这样说对吗?
- 3函数f(x)=x平方+1在(-∞,o)上是减函数
- 442以下的质数为什么除2,3之外都分布在两列?
- 5由四个一样大的长方形和一个周长是4分米的小正形拼成的一个边长是11分米的大正方形.
- 6A HISTORY OF CHINESE CIVILIZATION怎么样
- 7x^2+x-6分之10+x+3分之2=1
- 89吨沙子用去9分之1后,再用去9分之1吨,还剩下()吨
- 9y=log2 x/(x-1 )的反函数
- 10已知圆C:(x-3)2+(y-4)2=4,过点A(1,0)与圆C相切的直线方程为x=1或_.
热门考点