当前位置: > 已知f(x)=2x3-6x2+a(a是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是(  ) A.-37 B.37 C.-32 D.32...
题目
已知f(x)=2x3-6x2+a(a是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是(  )
A. -37
B. 37
C. -32
D. 32

提问时间:2020-12-15

答案
求导函数,f′(x)=6x2-12x,
令 f′(x)>0得x<0或x>2,又因为x∈[-2,2]
所以f(x)在[-2,0]上是增函数,在[0,2]上是减函数,
所以f(x)在区间[-2,2]的最大值为f(x)max=f(0)=a=3
所以f(-2)=-37,f(2)=-5,
所以x=-2时,函数的最小值为-37.
故选A.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.