当前位置: > ∫uf(u)du 上下限分别为2x和x时,对x求导是多少...
题目
∫uf(u)du 上下限分别为2x和x时,对x求导是多少
对u求导又是什么结果呢 有何区别

提问时间:2020-12-15

答案
对x求导:∵∫f(x)dx(上b(x)下a(x))求导=f(b(x))b`(x)-f(a(x))a`(x)它的证明是:令∫f(x)d(x)=F(x), 则:∫f(x)dx(上b(x)下a(x))求导=F`(b(x))-F`(a(x))=f(b(x))b`(x)-f(a(x))a`(x) 则∫uf(u)du ...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.