题目
如图,A、B、C为⊙O上三点,∠BAC=120°,∠ABC=45°,M,N分别是BC,AC的中点,则OM:ON=______.
提问时间:2020-12-15
答案
连结OA、OB、OC,如图,设⊙O的半径为R,
∵∠BAC=120°,∠ABC=45°,
∴∠ACB=180°-∠BAC-∠ABC=15°,
∴∠AOC=2∠ABC=90°,∠AOB=2∠ACB=30°,
∴△OAC为等腰直角三角形,∠BOC=90°+30°=120°,
∵M,N分别是BC,AC的中点,
∴OM⊥BC,ON⊥AC,
在Rt△OCN中,ON=
∵∠BAC=120°,∠ABC=45°,
∴∠ACB=180°-∠BAC-∠ABC=15°,
∴∠AOC=2∠ABC=90°,∠AOB=2∠ACB=30°,
∴△OAC为等腰直角三角形,∠BOC=90°+30°=120°,
∵M,N分别是BC,AC的中点,
∴OM⊥BC,ON⊥AC,
在Rt△OCN中,ON=
|