当前位置: > 已知关于x的一元二次方程mx2+(2m-3)x+(m-2)=0的两根分别是tanα,tanβ.求tan(α+β)的取值范围....
题目
已知关于x的一元二次方程mx2+(2m-3)x+(m-2)=0的两根分别是tanα,tanβ.求tan(α+β)的取值范围.

提问时间:2020-12-14

答案
由题意,可得
m≠0
△=(2m−3)2−4m(m−2)≥0

解得m≤
9
4
且m≠0
.        
由韦达定理有tanα+tanβ=−
2m−3
m
,tanαtanβ=
m−2
m

tan(α+β)=
tanα+tanβ
1−tanαtanβ
=−m+
3
2

m≤
9
4
且m≠0
,从而求得tan(α+β)的取值范围是[−
3
4
3
2
)∪(
3
2
,+∞)
利用韦达定理,有tanα+tanβ=−
2m−3
m
,tanαtanβ=
m−2
m
,根据两角和的正切公式,将tan(α+β) 展开,最后化成关于m的函数,求出范围,注意一元二次方程根存在的条件是△≥0.

两角和与差的正切函数;二次函数的性质;一元二次方程的根的分布与系数的关系.

本题考查一元二次方程根存在的条件,两角和的正切公式的应用,函数思想及函数值域求解.是道好题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.