当前位置: > 高二数学:椭圆c:x^2/a^2+y^2/b^2=1的离心率为2跟号5/5,且A(0,1)是椭圆的顶点 ①求椭圆方程 ②过点A作斜率为2的直线ll,设以椭圆c的右焦点F为抛物线E:y^2=2px(p>...
题目
高二数学:椭圆c:x^2/a^2+y^2/b^2=1的离心率为2跟号5/5,且A(0,1)是椭圆的顶点 ①求椭圆方程 ②过点A作斜率为2的直线ll,设以椭圆c的右焦点F为抛物线E:y^2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求M到l距离的最小值

提问时间:2020-12-14

答案
(1)由题意可知,b=1
∵ e=c/a=2根号5/5
即 c^2/a^2=a^2-1/a^2=45,∴a^2=5
∴所以椭圆C的方程为:x^2/5+y^2=1.
(2)由(1)可求得椭圆C的右焦点坐标F(2,0)
∴抛物线E的方程为:y^2=8x,
而直线l的方程为x-y+1=0
设动点M为 (y0/28,y0),
则点M到直线l的距离为
d=|y0^2/8-y0+1|/根号2=|1/18*(y0-4)^2+8|/根号2≥8/根号2=4根号2
即抛物线E上的点到直线l距离的最小值为 4根号2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.