当前位置: > 离散数学关于笛卡尔积的基础问题...
题目
离散数学关于笛卡尔积的基础问题
证明:(A-B)XC=(AXC)-(BXC)

提问时间:2020-12-14

答案
任取元素∈(A-B)×C,则x∈A-B且y∈C,所以x∈A且x不属于B且y∈C,所以∈A×C且不属于B×C,所以∈(A×C)-(B×C).所以(A-B)×C包含于(A×C)-(B×C).
任取元素∈(A×C)-(B×C),则∈A×C且不属于B×C.由∈A×C得x∈A且y∈C.又不属于B×C,所以x不属于B.所以x∈A且x不属于B,所以x∈A-B.所以x∈A-B且y∈C.所以∈(A-B)×C.所以(A×C)-(B×C)包含于(A-B)×C.
所以,(A-B)×C = (A×C)-(B×C).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.