题目
已知抛物线y=x^2+(2k+1)x-k^2+k
设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x1^2+x2^2=-2k^2+2k+1.
(1)求抛物线的解析式
(2)此抛物线上是否存在一点P,使△PAB的面积等于3?若存在,请求出点P的坐标;若不存在,请说明理由.
设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x1^2+x2^2=-2k^2+2k+1.
(1)求抛物线的解析式
(2)此抛物线上是否存在一点P,使△PAB的面积等于3?若存在,请求出点P的坐标;若不存在,请说明理由.
提问时间:2020-12-14
答案
解
A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点
说明x1 x2是方程x^2+(2k+1)x-k^2+k的两个根
所以x1+x2=-(2k+1),x1*x2=-k^2+k
x1^2+x2^2=(x1+x2)²-2*x1*x2=[-(2k+1)]²-2(-k^2+k)=6k^2+2k+1
又因为 满足x1^2+x2^2=-2k^2+2k+1
所以6k^2+2k+1=-2k^2+2k+1
解得 k=0
于是
(1)抛物线的解析式为
y=x^2+x (把k=0代入y=x^2+(2k+1)x-k^2+k)
(2)假设存在一点P(x,y)
令y=x^2+x=0
解得x1=-1,x2=0
则AB=x2-x1=1
△PAB的面积=AB*|y|/2=1*|y|/2=3
解得 y=±6
当y=6时,代入y=x^2+x,解得x=2或x=-3
当y=-6时,代入y=x^2+x,得方程x^2+x+6=0,方程无实数解
因此P的坐标是(2,6)和(-3,6)
A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点
说明x1 x2是方程x^2+(2k+1)x-k^2+k的两个根
所以x1+x2=-(2k+1),x1*x2=-k^2+k
x1^2+x2^2=(x1+x2)²-2*x1*x2=[-(2k+1)]²-2(-k^2+k)=6k^2+2k+1
又因为 满足x1^2+x2^2=-2k^2+2k+1
所以6k^2+2k+1=-2k^2+2k+1
解得 k=0
于是
(1)抛物线的解析式为
y=x^2+x (把k=0代入y=x^2+(2k+1)x-k^2+k)
(2)假设存在一点P(x,y)
令y=x^2+x=0
解得x1=-1,x2=0
则AB=x2-x1=1
△PAB的面积=AB*|y|/2=1*|y|/2=3
解得 y=±6
当y=6时,代入y=x^2+x,解得x=2或x=-3
当y=-6时,代入y=x^2+x,得方程x^2+x+6=0,方程无实数解
因此P的坐标是(2,6)和(-3,6)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1十六年前的回忆 我从"___""___""___"等词语中方体会到李大钊___________.
- 2We talk ------English and our teacher listens -----us 填空
- 3单质由()组成,化合物由()组成
- 4一个二次函数图像,当自变量x=0时,函数值y=-3当x=-3与1/3时,y=0则这个二次函数的解析式为多少?
- 5简析晏殊《破阵子》中主人公的形象
- 6下面是非谓语动词的是,写出谓语动词所有形式
- 7y=-2x^2 -5x+7 与X轴交于A,B,顶点是则C,则三角形ABC的面积是?
- 8( ):24=3/8=12除以( )=30( )
- 9匀强电场的电场强度E=100N/C,A,B两点相距10cm,A,B两点连线与电场线夹角为60度,则AB的电势差____
- 101.i have many k___of books 2.my friends are f__to me